Category Archives: APT Year One

Our Custom Designed Bridge Tester

Our Goal – Make A Better Bridge Crusher!

This year Bob and I decided to upgrade our bridge project. We wanted to create an improved device for measuring the load on the model bridges created by the students. Specifically, we wanted to design a way for the students to collect meaningful performance data.

The problem with our old method (filling a bucket with sand until the bridge catastrophically failed) was that it didn’t allow for the students to collect evidence about where and why the bridge failed. In many cases, the bridge actually experienced a significant failure, but because the bridge collapsed around the loading plate, the loading plate actually acted as a support for the bridge.

We had seen other “bridge testers” from vendors (http://www.pitsco.com/Structures_Testing_Instrumenthttp://kelvin.com/kelvin-bridge-material-tester-w-cpad/http://www.vernier.com/products/sensors/vsmt/) but we had the idea that perhaps we could create one that might be better, or at least it might be fun to try. In this post, we are going to share with you what we created and why we think it actually turned out really well, but we also point out some room for improvement.

The Frame

The frame of the entire device is really based on the Vernier Structures and Materials Tester. We thought this frame was probably the best, and we wanted to make our tester from extruded aluminum tubing as well. We went about designing the bridge tester in our favorite CAD program, Fusion360 by Autodesk. We sent our CAD file to the company 8020 and they precut all our t-slotted aluminum frame members to size. This was awesome because it made assembly super easy and it saved us on shipping too! Our experience with this company was amazing – they were super helpful and even gave us some really helpful advice. If you are thinking about making anything requiring t-slotted aluminum, definitely order from them.

The Load Sensors

We wanted a a bridge tester that actually gave us data that allowed us to figure out how and why the student bridges failed. That meant that we needed more data and we needed data that could be connected to the design and fabrication of the bridge. We noticed that all the vendors’ designs had only one load sensor, and some also had a way to detect overall deflection. We suspected that we could get better data if we had four independent load sensors – one for each abutment where the bridges were supported. The four sensors would (theoretically) give the students a way to analyze how the load was being distributed, and thus tell us something about the torsional behavior of the bridge.

Sparkfun load sensor

Sparkfun load sensor

I set out to learn a bit about load sensors and I came across a fantastic tutorial at Sparkfun (https://learn.sparkfun.com/tutorials/getting-started-with-load-cells). We ordered four load sensors (see picture above) from Sparkfun. Our design (shown below) has the four load sensors  fitted with 3D printed “shoes” as the bridge abutments.

IMG_3048

The four load cells.

IMG_3044

Two load cells with abutments.

The sensors are mounted on custom fabricated aluminum plates that can be moved laterally to accommodate slightly different bridge widths. The load sensors had to be connected to load amplifiers that were then connected to an Arduino (more on that below). The load sensors were mounted to the frame of the bridge tester on custom laser cut plates:

IMG_3043

Load cell amplifiers for two load cells.

The load amplifiers have to be used with the load sensors in order to amplify the signal so that the Arduino can read the data correctly.

The Loading Mechanism

Bob designed and fabricated the loading mechanism that was based on many of the designs we had seen online. It consists of a block that is free to move vertically up or down a threaded rod which is then connected to a spoked wheel.

IMG_3047

Loading wheel.

When the wheel is turned, the block moves up or down the threaded rod. This bar is connected to a loading plate via a metal cable that hooks into the loading plate and the block:

IMG_3053

Load plate from below – revealing loading wire attachment.

IMG_3052

Loading wire attached to threaded block.

The loading plate is placed on the loading plane of the bridge (the “roadway”), and then the bridge is loaded by spinning the wheel, which lowers the block, which pulls the bridge downwards:

IMG_3050

Loading plate on bridge.

Collecting The Data: The Software

 The software responsible for collecting the data is made up of two programs – one that runs on the Arduino micro-controller that is connected to the load sensors, and the other is a Processing sketch that runs on a computer/laptop connected to the Arduino via USB. The code is pretty simple, and it was mostly written using code from other sources and then modified for our specific purposes.

The Arduino code just collects the data from the four load sensors and then sends the data serially as a comma delimited package. The Processing code reads the serial port and then essentially dumps the data into a csv file. It does have some flourishes like a graphical display of the individual sensor loads as well as a display of the total load and whether or not the bridge has met the minimum load requirement set in the project descriptor.

You can view and download all the code here on GitHub.

The Performance Report

When the data is displayed in a graphing program, it looks like this:

Sample bridge data

Sample bridge data

You can see that the four sensors do not read equal values, and that the bridge begins distributing the load unevenly. The blue and orange lines show that these two load sensors were equally loading and were taking on a larger load than the green and red values from the other two load sensors. Later inspection of the bridge showed that this bridge failed at the load sensors that were recording a higher load value. Also, these sensors were located diagonally from one another, and once again showed that the bridge was being twisted.

You can also see that around 80 seconds (the 800 data sample) that the bridge experienced a sudden decrease in load – this was the point of failure. The data clearly shows a point at which the bridge failed and thus gives us a clear metric for performance.

The student teams were each given the results and were asked to answer these questions:

  1. What was the maximum load that your bridge sustained before failure?
  2. Calculate the load to weight ratio of your bridge.
  3. What were the individual maximum force values on each load sensor before failure?
  4. Identify on your bridge where the bridge failed. Take a picture of this point of failure and note its location.
  5. Based on the load data for the four sensors, describe why your bridge may have failed.
  6. What could you have done to increase the performance of your bridge?

The data really allowed for some rich analysis and the students were able to make some really informed critiques of their design and fabrication quality. We have been very happy with the results!

Future Improvements

For version 2.0 we hope to add these improvements:

  • Add the ability to measure deflection. We think that this might be done by measuring the angular displacement of the loading wheel, but we aren’t sure just yet.
  • Some way for the software to detect a failure – perhaps a way to detect a significant decrease in the load data. It would have to allow for some downward movement of the load data because there is some settling and deforming that can occur that might not be catastrophic.
  • It would be nice to clean up the code – especially the Processing code. I’d like to add some fancy GUI elements too so that it is a bit more attractive.

If you would like to build your own advanced bridge tester for your classroom, we can send you all our CAD files, software files and even answer questions. Its not easy to build, but its fun, and we spent about $350 dollars on this project as opposed to the $1000 to $1300 that the vendors are selling theirs for.

Investigating The Projectile Particle Model

The Class Designs The Deployment Experiment

The video above shows the recent deployment activity where students predicted the vertical position of a projectile (a Hot Wheels car) as it traversed a known horizontal distance. The student predictions are identified by green sticky notes on the the left hand side.

The students first had to work out the problem on their own whiteboards before being given the sticky note that indicated the vertical position as measured above or below the red line. Most groups calculated the same position with two groups noting a sightly different prediction!

In this deployment, I set up the ramp, and told them that they had a photogate sensor at their disposal. They had to design the experimental procedure. A great discussion followed, and the class was quite successful as you can see (the students who had the significantly different prediction were able to hunt down their mistake – so everyone felt that the model “worked”).

Analyzing Projectile Motion in Video and Code

Prior to the deployment, students were asked to use a video camera to record the motion of a projectile. This is a great experiment to do with LoggerPro or some other video analysis tools that allow the students to track the position of the ball or some other projectile.

The students have also been learning how to simulate constant velocity and constant acceleration particle motion in Processing. We extended this to now include projectile motion, and the students analyzed simulated projectiles and compared the data gathered in the real universe to that gathered in the virtual universe. I will be writing about this process in more detail soon.

A Modernized Bridge Design Contest

IMG_0283

Modernizing An Old Classic

We have just completed the second project in the Academy for the 2014-15 school year. It was a huge success! This project takes a classic physics project and “upgrades” it by incorporating modern engineering design technology and fabrication techniques.

We started with a great project that is now available online through Engineering Encounters. This was a project that was originally published by Stephen J. Ressler of the United States Military Academy. It is a rigorous approach to designing and building bridges from file folders:

https://bridgecontest.org/resources/file-folder-bridges/

Its a great project with an incredible set of resources, background information, and step by step instructions. Unlike less rigorous and involved bridge design projects (using toothpicks for example), this project has the students building compression members (beams) and tension members (cords) and gussets to better model real world designs and to give the students the opportunity to learn and make decisions about which members to use in different parts of their own designs.

The only issue that we had with this project is that it requires the rather tedious process of having students trace out the unfolded beam designs onto file folder material and then use scissors and  blades to cut out each beam and cord. But we have a laser cutter! There had to be a way to incorporate both 3D CAD design and our laser cutter in order to modernize this process. We also knew that Autodesk Inventor had some really amazing tools for analyzing design structures.

From Sheet Metal To Manila Folders

Autodesk Inventor has an amazing set of tools for designing sheet metal parts. Using these tools, an engineer can construct 3D models made of folded metal parts made from just about any thickness of metal stock. Once you have designed the folded metal part, Inventor will create a flat pattern design for you that you could then send to a CNC plasma cutter to cut from sheet metal stock. You would then fold the part up manually and you would have your folded part.

Inventor gives you the ability to custom define the thickness of your stock, and some of the parameters around how it can be bent. We defined our stock to be as thick as manila folder paper. The next step is a bit tricky, but with the help of a great video I came across from Rob Cohee, we were able to define custom folded paper beam stock that the students could then use to build out their frames. Once again, Inventor has an amazing set of tools for defining structural frames (called The Frame Generator) that can then be populated with any kind of structural beam. You can also define your own structural beams that can be used to populate your frame.

I have included a video below that we use with the students to help guide them through this process:

Using the frame generator tool in Inventor also allows the student to miter and trim the beam members, which allows the students to focus on design rather than getting lost in the time consuming process of calculating the cut angles. The following video shows you how this can be done:

Once the students had designed the bridges, it was time to prepare the flat patterns and have the laser cutter do the work of cutting them out.

Fold, Glue, Repeat. (Some Assembly Required)

IMG_0353

The students prepare their flat pattern cut-outs for the laser cutter and then you let the laser “rip”! Its awesome to sit back and watch this machine cut. I never get sick of watching it! Having the students do this would take SO much longer, the cut parts would be less accurate, and as all CTE teachers know, one of the most dangerous tools in the shop is an Exacto blade.

IMG_0355

Some might argue that the “manual” process of cutting all these beams out by hand is “good for the students”, but we feel that saving time here allows us to use that time in other areas, such as virtual testing.  Before the students get to build their design, we ask them to use Inventor’s frame analysis tools to help them analyze potential weaknesses in their designs. The following video shows just how amazing this tool is:

Once the students have done their analysis and cut their construction members, its time for folding and gluing, and folding, and gluing, and … At this point our project does not differ from the Engineering Encounters project. The students use a sheet of paper (actually two 11 x 17 sheets) with an elevation view (printed from Inventor as a CAD drawing) glued to a board as a guide for assembling the beams, cords and gussets:

IMG_0351

IMG_0362

This process goes relatively quickly as the students have done all the prep work to make sure that the pieces all fit together. Once again, this really demonstrates how modern technology can allow the students to focus their attention on design.

To Break Or Not To Break

Once the bridges are assembled, its time to test them out. The performance metrics for the contest are not actually based on the strongest bridge but rather a more realistic approach. We have attached a monetary value to each beam, gusset and cord. The bridges are then tested to a set value – the required load. The bridge that holds that load and is “manufactured” least amount of money is then given the highest marks.

Once the bridge has been tested at the required load, we then give the students the choice to see just how much the bridges can hold before catastrophic failure. Most students (encouraged by both peers and staff!) decide to take their bridge to the limit.

Its always a fun way to end the project!

Analyzing A Rocket’s Performance – A Common Core Assessment

Overview: What is Common? Argumentation

You might be one of the many Americans that are a bit perplexed by this whole new Common Core State Standards (CCSS) “stuff”. In this post I will try my best to explain how I designed an assessment for the first year students in the Academy that aligns with the Common Core. This was partly motivated by a district wide push to bring all curriculum in alignment with the CCSS, specifically as it relates to literacy.

For context, I will identify the educational goal that in part motivated this effort. Our school site administration has identified argumentation as a key curricular focus that all staff will address this year. This has given the school the ability to focus on literacy and has allowed the school staff to guide their efforts towards a collaborative goal.

This assessment was organized into three parts: the prediction, the analysis, and the reflection. Each part of the assessment focused on specific standards.

Part 1: The Prediction Report

If you haven’t had a chance to read a previous post where I describe how the students conducted experiments and collected data pertaining to building a predictive model, then I might suggest it, as it is really the first part of this assessment.

The standards addressed in this part of the assessment are as follows:

CCSS.ELA-Literacy.RST.11-12.3
Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.

CCSS.ELA-Literacy.RST.11-12.7
Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.

To summarize the first part of the assessment, the students were required to collect data in order to create a prediction report describing the performance of their model rockets. The report had to include these elements:

  1. Force diagrams (free-body diagrams) depicting the predicted forces acting on the rocket during the a) thrust phase, b) cruise phase, and c) descent phase.
  2. Net force equations that identify the causal relationship governing the motion state of the rocket.
  3. Three motion graphs depicting the predicted behavior of the rocket. This included its predicted acceleration, velocity and position as a function of time.

IMG_0836

The student teams submitted these reports prior to the actual launch.

Part 2: Analysis Report

The next step was to run the actual experiment – the launching of the rockets! Although the launch day was soggy, we still had a successful afternoon, and we got some great data. The details of the launch are described in a previous post.

The standard addressed in this part of the assessment was as follows:

CCSS.ELA-Literacy.RST.11-12.9
Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

The students were given their prediction reports back, and then also given the data from the small altimeters that were used to collect altitude data. The students were then asked to create an analysis of their rocket’s performance:

IMG_0834

This report required these elements:

  1. Using the data analysis tools in LoggerPro, they had to identify:
    1. The acceleration of the rocket during the thrust phase (a best estimate)
    2. The acceleration of the rocket during the cruise phase (a best estimate)
    3. The maximum velocity of the rocket (a best estimate)
    4. The descent velocity (a best estimate)
  2. A velocity vs time graph from the information above.
  3. An acceleration vs time graph.

Part 3: Reflection (Addressing Counter-claims)

The final part of the assessment asked the students to compare the prediction and analysis reports and then propose reasons for discrepancies between the data. I also asked the students to respond to some Aristotelian counter claims by using their data and the models that we had collectively established in class.

The standards addressed in this part of the assessment were:

CCSS.ELA-Literacy.RST.11-12.8
Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

CCSS.ELA-Literacy.WHST.9-10.1.a
Introduce precise claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that establishes clear relationships among the claim(s), counterclaims, reasons, and evidence.

I asked the students to respond to the following questions which required that the students use data to support their analysis.

  1. Compare the predicted NET force on your rocket during the thrust phase to the actual NET force on your rocket during the thrust phase by using your data – you will need to estimate the actual NET force during this phase. Using these numbers as evidence (you must include these values in your answer), describe at least one reason these values are different.
  2. Compare the predicted maximum height of your rocket with the actual maximum by using your data. Using these numbers as evidence (you must include these values in your answer), describe at least one reason these values are different.
  3. Compare the predicted descent velocity during the descent phase to the actual descent velocity from your data. Using these numbers as evidence (you must include these values in your answer), describe at least one reason these values are different.
  4. Look at your data and then also at your prediction graphs. Describe at least two differences between the graphs, AND WHY you think these differences exist.
  5. Based on the actual data you collected, what design changes would you make IF you could create this rocket from scratch again? Give at least two examples of design changes you would make.

I also included two questions that asked the students to respond to an alternative explanation for the behavior of their rocket. These claims were specifically created in order to address student misconceptions involving inertia and residual forces.  Below I have included the questions and example student responses:

Question 1:
“Make a counter claim to the following statement from someone who is an “Aristotelian”: The reason that the rocket continued to move upwards after the fuel had run out is that the fuel force continued to push on the rocket, but lessened until the rocket reached its apex, when the rocket stopped moving and the thrust force disappeared. Once the thrust force disappeared, the rocket began falling back to earth!”

Example Response:
“This is incorrect because as soon as the fuel runs out there is no longer a thrust force acting on the rocket. After the fuel runs out the only force acting on the rocket is the force of gravity which will slow down the rocket until its velocity is zero and then the rocket will continue accelerating downward and fall to the earth.”

Question 2:
“Make a counter claim to the following statement from someone who is an “Aristotelian”:The reason that the rocket descended back to earth is because the rocket is heavier than air and so the force from gravity was greater than any air resistance force on the parachute, thus resulting in the rocket falling back to earth.”

Example Response:
“Actually, the reason the rocket descended to earth is because the forces of gravity and drag were equal. The rocket was falling at terminal velocity, and we know that when an object is traveling at a constant velocity there is no acceleration. If the force of gravity working on the rocket was greater, the rocket would be accelerating in its descent. Knowing that the rocket falls in this way, we can conclude that the forces of gravity and drag working on the parachute were equal.”

Conclusion

I am very pleased by the students’ performances on this assessment, and many of the students enjoyed the process and appreciated the opportunity to connect their learning and demonstrate their knowledge and skill. I feel that there is much to consider for the next time I do this kind of assessment, which will be at the end of the spring semester.

One area I can quickly see I need to help the students develop is making connections to data more explicit. Most students would justify their arguments by stating that a certain explanation was evident. I need to help them develop the skill of presenting evidence more clearly and then linking their arguments to the actual evidence. This was an implicit practice, but it needs to be more explicit.

I hope to hear from you all about how I might perfect this process, and prepare the students to excel on this kind of authentic, problem based assessment.

Thanks!

We Have Lift Off!

15414703973_b0258a08ca_h  15846865828_b08d8515cd_h 16033503742_be978fd9ca_h

This is a follow up post to Modeling A Rocket’s Journey – A Synthesis where I described how the students in the first year program were engaged in creating a predictive report for their model rockets. I want to emphasize that these model rockets were not kits. Each rocket was designed using 3D CAD software, and each component was either fabricated from raw material, or was created from material that was not intended for use in model rocketry. The only exception to this is the actual rocket motor.

The next step was to launch the rockets and have the altimeter payload collect altitude data.

Launch Conditions – A Bit Soggy

Unfortunately the week of our scheduled launch happened to be a week of some pretty hefty rains. We rescheduled the launch twice before finally accepting the soggy launch conditions. With umbrellas and rain jackets, we trudged out to the baseball diamond and got to work setting up for the launch. We had some minor difficulties in the wet weather, but eventually had a very successful launch day.

Most of the rockets were able to launch and deploy their valuable payload – the Pnut Altimeter.

15414689283_8197c70584_h

The students seemed very excited to finally see the rockets launch, and to see the successful deployment of the parachutes. Although we all got a little wet and muddy, we had a great time!

The Altimeter Data

The altimeters use a small barometric pressure sensor to collect altitude data (the altimeters also contain a small temperature sensor and voltage sensor). The altitude is recorded in feet every .05 seconds. Here is an example of one rocket’s recorded flight data:

altitude_vs_time

https://plot.ly/~stemples/9

The students were then asked to use the data to create a comparative analysis report. I will detail how the assignment was set up and also discuss how the students performed on this assignment. That will be for another post.

I want to also thank Mr. Kainz for his amazing photos that are displayed here.

Modeling A Rocket’s Journey – A Synthesis

A Synthesis Of All The Models (Thus Far)

In this post I will describe a culminating activity for the first year students in the Academy. This is really the destination that the students have been headed towards since the beginning of the course. Everything they have learned is synthesized in this activity where the students gather data from various observations/experiments and then use the data to predict their own model rocket’s journey.

Note: There were two significant simplifications that we had to make based on the ability level of the students and the physics content covered in class. We had to assume that there was no air resistance force acting on the rocket during the thrust and cruise phases. We also assumed that the mass of the rocket did not change. I intend to have the students reflect on how this might affect the predictions and then analyze the actual performance data. More on this later…

Measuring The Rocket Engine Thrust

We first needed to figure out the average force exerted by the rocket motor on the rockets and the time interval during which that force would be applied. This would give the students both the thrust force and the length of time of the thrust phase. We needed to collect force measurements for the rocket motors that we were using (C6-5). You can actually download this from many different websites, but it was much more fun to actually do it ourselves! Mr. Holt made a neat little rocket motor holder that was attached to a force meter and we went out into the rain to test the motor (see video below – thank’s Gary!):

The force data was then shared out to the students – here is what the graph looked like:

rocket-engine-test

And this is the force vs time graph one retailer posted on their website:

Although the students had not been introduced to the concept of Impulse-Momentum transfer, we can use the average force, and that seems to work out really well. Just to make sure we could do this, I used the Integral tool in LoggerPro to measure the impulse, and it came out to 8.83 N s – really close to what Estes states – 8.8 N s.

A Mini Wind Tunnel Test

The students then needed to measure the drag force on their parachutes (all cut on our new laser cutter) as a function of air speed so that they could estimate the terminal velocity of their rocket during the descent phase.  Next step was to test the parachutes. Luckily, Mr. Holt and I had helped two of our previous students create a really nice wind tunnel. We used a force meter attached to a vertical post inside the tunnel…

parachute_test

…and then we used a little Kestrel anemometer to measure the air speed…

air_speed

Students were able to increase the air speed in the tunnel by turning a rheostat that controlled the fan speed. They then measured the wind velocity and graphed that against the measured force – just like NASA!

Here is some sample data to show how the results came out – not bad!

parachute-test-data

Students now had a way to estimate the descent velocity because they could calculate the gravitational force on their rocket, using the measured mass of their rockets, and then they could use their data to find the corresponding wind speed.

Putting It All Together

As part of their final (50%), the students were asked to then take this data, measure the mass of their model rocket and construct a prediction. The prediction was to include these five elements:

  1. A set of force diagrams for the different phases – thrust, cruise, and descent. The diagrams also had to include accompanying net force equations.
  2. An acceleration vs time graph.
  3. A velocity vs time graph.
  4. A position vs time graph.
  5. Finally a calculation sheet that includes all calculations required to create the motion graphs.

The students have been asked to turn this in before the actual launch.

As we collected the data above, I never explicitly reveal how the data should be used to make these predictions, but I do give them some guiding questions that orients them. They work with their partner’s on this report, but I warn them that they will both be held responsible for understanding the process of creating the prediction report.

Testing the Predictions

Each student rocket will be equipped with a small altimeter (from Apogee Rocketry – love this thing!).

This altimeter records altitude data in 1/10 of a second intervals, and we have found it to be very accurate and reliable. We will be launching next week, so tune in soon for an exciting update on how the launches went!

Building The Net Force Particle Model (Part 1)

From “The How” to “The Why”:

One of the three projects that the students will complete this year is a custom designed and fabricated rocket. One of the requirements of this project is for the rockets to carry a small solid state altimeter that collects vertical position data. This year I decided to give the students some data collected by last year’s students. Here is what the data looks like from one typical altimeter reading:

Rocketdata2013

As an introduction to this next model, I presented them with the data and asked them to use both the Constant Velocity Particle Model and the Constant Acceleration Particle Model to describe the motion of the rocket based on the data. Students responded to several questions that I created and they posted their answers through the Learning Management System we use.

A Simple Definition, A Simple Representation

The student investigation teams were then asked to draw velocity vs time graphs on their whiteboards. I was impressed to see that most teams were able to interpret the position data and create a velocity graph that agreed with the data. There was some debate about the graphs, but the students worked through these differences and came to consensus around what the graph would most likely look like. At this point I was thinking about using LoggerPro’s ability to graph the derivative of a data set, but decided that I would leave that for a later date, though next year I might do it earlier.

I then introduced a very basic definition of a force:

“A Force is A Push or A Pull”

And then I proposed that we could represent the force with an arrow, just as we had done with velocity and acceleration. I then asked them to divide the rocket data into four sections based on the answers to the questions we had discussed. The students then drew a representation of the rocket in each stage and the forces acting on the rocket. The stages the students identified were 4) on the ground, 3) descending by parachute, 2) going up without fuel, and 1) going up with fuel. I asked them to draw the diagrams by starting at the end. Here is a typical example of the force diagrams the students drew:

photo 2

The labeling is a standard that is outlined in the Modeling methodology – it reads (type, feeler, dealer).

Constant Velocity Motion and Net Force

We started the class discussion by looking at the forces acting on the rocket when the rocket was on the ground. Students agreed unanimously that there were two forces acting on the rocket – one down, one up – the gravitational force and then the force from the ground. Great. Then on to the descent phase. Certainly less unanimity here. The students again agreed on the number of forces – two – one up from air resistance, one down from gravity. The students quickly got into several back-and-forth arguments about the length of the force vectors. The class was split. Were the forces equal? Or, was gravity “winning”? The big stumbling block was around the question, “if gravity was equal to the air resistance force, then why was the rocket still falling”? A classic example of Aristotelian thinking. I encouraged them to ask the question – “if gravity was winning, why wasn’t the rocket speeding up?” One student proposed that maybe the force of gravity was just ever so slightly larger. Some students pounced in this. They argued that the forces weren’t equal at first, but as the rocket (with parachute) descended, the air resistance force strengthened and eventually became as strong as the gravitational force. the reason the rocket didn’t slow down was because it was already moving when the forces became equal. Awesome. Then a student gave an excellent description of a thought experiment where a box was traveling through space in one direction and convinced the students that the box would not slow down if you pushed equally on both sides of the box. Students reached consensus – the rocket moved at a constant velocity because the forces were equal.

The “Residue” Misconception

We then progressed to the next stage. Things got really interesting. Without exception, ALL the student groups identified an arrow pointing upward, even though they all agreed that the fuel had run out. The question that I think cuts through this the quickest is to ask “who is pushing on the rocket upward?” Most students get that funny look on their faces as their brains begin to realize that they just ran into a logical conundrum. Some students start to respond – “the rocket pushes the rocket.” OK, how? What kind of force is it? A contact force? How does it push or pull itself? The students at this point began to question each other and the room erupted in arguments. Being a bit of a control freak, I’ve had to learn to allow space and time for these chaotic moments, but also realize the importance of catching the class before it descends into something less productive.

At this point, one group erased the upward force. I asked them why they had done this. They responded that they didn’t think a force was needed for the rocket to continue upward, and that gravity and air resistance were slowing the rocket down. This seemed impossible to some of the students. They asked – “but something is left over after the fuel runs out, isn’t there?” The class began to divide up into those that now believed the rocket no longer had any upward force acting on it and those that believed there was some kind of “left-over” force, what I call a “residue”. So, once again, I asked them to identify the dealer of the residue force. The answer is generally – “the fuel”. Ah, but hasn’t the fuel run out? Yes, but the rocket has gained something from the fuel and now that is what is pushing it upward.

This is not such a wild idea, and in fact is not that far from the idea of Kinetic Energy. The students that were in the “no upward force” camp started to explain to the other students in the class that the fuel had “given” the rocket its upward velocity, but now that the fuel was gone, the rocket was now slowing down. We discussed the idea that anything that was slowing down must be experiencing a force pushing in the opposite direction of its velocity. We returned to the thought experiment with the box floating through space. The students debated about whether this box would slow down if the force that had gotten the box moving in the first place disappeared. The students agreed that if there were no forces acting on it to slow it, then it was reasonable to say that it would never slow down. Students then agreed the rocket was no different. It didn’t need a force to continue moving at a constant velocity, but that if it was instead accelerating (in this case in the negative direction) then it would need a force, which was provided by gravity and the air resistance force.  The students began to coalesce around the idea that if a force was a push or a pull, then the rocket that had run out of fuel was not getting pushed any longer, and that although it was moving upward it was indeed accelerating downward.

Making Some Observations

During the next class, I had the students set up a motion detector on one side of a Vernier dynamics track and use a force meter to pull on a low friction cart. They were to also record the velocity of the cart while the students pulled twice in quick succession on a string connected to the cart and force meter.

IMG_0686

The students then shared their graphs with the rest of the class:

IMG_0687

This experiment is meant to re-enforce some of the arguments made during the previous class. The students quickly see that the velocity is measured to change when the force is applied and that the velocity is “constantish” when no force is applied. The students were ready to tackle how the force and acceleration were quantitatively related, but that’s for another post…