Category Archives: News

Simulate, Test, Analyze: A Framework For Rigor

trebuchet-launch---08_23970235271_o

“Have Fun Storming The Castle!”

At the end of this fall semester, the second year students in the Academy rolled and carried their medieval mechanisms of mayhem to the SRHS track and we spent the afternoon watching the devices hurl lacrosse balls across the athletic field.This project was the final performance assessment of the semester and required that students design a gravitationally powered projectile launcher. This is an age old engineering/applied physics project.

Like many engineering projects done in high school, the physics principles governing the dynamics of the project are quite complicated, and ultimately the actual “application” of the science principles is often cursory. Students don’t have the background or mathematical abilities to to do the complex calculations needed to make an optimization adjustment to their mechanical device.This leads to the disconnection between the science content and engineering practice. Students don’t have the ability to make an informed decision about design choices. This is because it is difficult, very difficult.

Over the past few years I have been very interested in addressing this problem. This post discusses a framework that I have been working on to incorporate science into engineering projects. I think this framework allows high school students to engage in difficult scientific analysis without overwhelming them.

A Framework For Rigor

I won’t claim that this is a perfect solution, but so far I think we have experienced some success in creating a tighter relationship between science and engineering.  Last December I helped conduct a workshop at the NCCPA Professional Development Conference in Petaluma, CA. The name of the workshop was “NGSS, Prediction Reports and Your Science Class” and the point of this workshop was to give the attendees a framework for incorporating the Engineering standards into the science curriculum.  My co-presenter (Vipul Gupta) and I focused on the creation of prediction reports using computer simulations as a way to address two very important standards in the NGSS framework:

Using Simulations with Informed Input

Computer simulations are very popular in the educational space. They give teachers and students a virtual space where students can interact with virtual lab equipment or virtual objects that behave similarly to physical objects in the real world. With that said, they can fail to address students misconceptions because they do not always succeed in linking a conceptual model to the physical behavior. I also believe that the best simulations are ones that output data that can be analyzed with other scientific/mathematical tools. I also think that a good simulation requires that students provide meaningful input that gives them opportunities for analyzing the relationship between the input and the output.

Simulations used in engineering projects can be extremely helpful in addressing one of the main problems in engineering education. Students often design and build mechanical devices without understanding the physical principles that govern the design. The design process becomes an exercise in trial and error, or simply is reduced to copying a design from the internet.

To do a predictive analysis of a rocket’s flight, or a bridge’s structural performance is extremely difficult and often requires advanced mathematics and physics. Simulations can give the students the ability to analyze their designs and understand how changing the design inputs affects the output. Once again, it is important to find a simulation that requires students to understand the inputs and outputs.

Virtual Trebuchet

For example, in our project, students were introduced to an online Trebuchet simulation tool. This simulation tool is great because it requires that the student learn how to measure and calculate certain inputs. The students must have a working knowledge of rotational inertia, center of mass, and other concepts before they use the simulation. This was ideal for our project because it gave students a relevance and motivation . They had learn about these concepts in order to actually use the simulation. The students could then change certain inputs and see how that would change the efficiency of the design, or the range of the projectile. The point is that they needed physics knowledge in order to use the tool. They might not have the ability to know how the simulation eventually calculated the output, but they knew that the simulation required an understanding of the inputs.

IMG_2674

Example Report

The Prediction Report

The next step is to ask the students to prepare a prediction report. This report is designed to get students to demonstrate their understanding of the inputs, display evidence of the required calculations or measurements needed to create the inputs and then analyze the simulation outputs. In the report for this project, I asked students to show a set of calculations and measurements for determining the center of mass of their throwing arm and the rotational inertia (moment of inertia). Students also had to provide similar information for the counterweight.  The students then had to run the simulation and document the outputs from the simulation.

The Test:  Data is Needed

The next step is to test the device. To make this step more rigorous and to be able to relate the scientific analytical process to the engineering process, it is crucial for the students to collect data that can be used to analyze the performance of their device/product and then reflect on how they would improve their design.

For this project, we decided to use high-speed video and Vernier’s LoggerPro video analysis software to plot the position of the projectile as it was launched from the device.

The Analysis

The analysis is actually broken into two parts. The first part requires a collection of calculations while the second part uses those calculations to make some qualitative assessments.

For example, in the above project, students had to use the collected position data from the video analysis tool to calculate the kinetic energy of the projectile and then the efficiency of the device. They had to be proficient at the analytical tool, which in itself requires physics content knowledge, providing once again an opportunity to apply scientific models in the analysis portion of this engineering project.

I have included the instructions for the analysis report here: Projectile Launcher Analysis Report.

Finally, students are given the opportunity to use the information gathered in the analysis report to reflect on their design, and more importantly use the information to inform how they would improve on a future design. I have included below the set of questions that I asked my students:

  1. Compare the efficiency calculation of the simulation to the efficiency rating that you calculated for your actual performance. Please describe why you think these values are not the same.
  2. Consider the design of your trigger. What design and fabrication decisions would you change in order to improve your trigger, AND explain WHY you would make those changes.
  3.  Consider the design of your sling. What design and fabrication decisions would you change in order to improve your sling, AND explain WHY you would make those changes.
  4. Consider the design of your release mechanism (called the nose). What design and fabrication decisions would you change in order to improve this mechanism, AND explain WHY you would make those changes.
  5. Consider the design of your arm. What design and fabrication decisions would you change in order to improve your arm, AND explain WHY you would make those changes.
  6. Consider the design of all other components and the overall design. What design and fabrication decisions would you change in order to improve your device (other than the trigger, sling and arm), AND explain WHY you would make those changes.

Conclusion

The overall design of this framework can be boiled down to this:

  • Engage students in a computer simulation that simplifies the process of modeling and analyzing a complex physical/chemical/biological process, but be sure that the simulation requires some conceptual and computational thinking.
  • When testing the performance of the design (bridge, rocket, etc.) make sure that the students are required to  collect data that can be analyzed and that once again demands that they apply their theoretical models.
  • Design an assessment that uses the analysis and gives the students an opportunity to make informed judgements of their designs for the purpose of redesign.

Designing and Fabricating Our New Signs

apt_logo_sign

It has been a goal of mine to adorn the lab with custom signs made using our own fabrication tools. Well, this fall, Bob and I finally made some time to get these signs done with the help of some of our students.

We designed the signs using Adobe Illustrator and Corel Draw. We then used the vector graphic files to cut the various layers of the signs out on the Plasma Cam and the laser cutter. It was impressive just how quickly we were able to fabricate all the signs (one on the front door which was the most complex sign, and then eight signs used inside the lab for identifying the different workspaces).

3d_printer_lab_sign

We think the signs really look great, and we have now been approached several times to help make signs for other areas around the school.

SRHS Girls Who Code

Discovering The Crisis in Computer Science

Last week, a group of 16 girls, myself and one other instructor were invited to attend the showing of the documentary film CODE: Debugging The Gender Gap. This excursion was hosted by the Mill Valley Film Festival and included a post showing discussion with the filmmaker Robin Hauser Reynolds. We traveled to the Lark Theater with another group from our neighboring high school Terra Linda. Our group represented all the currently enrolled girls in STEM courses that offer some exposure to the field of Computer Science. The Terra Linda group was composed of both boys and girls who participate in an after school “coding” club, but none of these students are actually enrolled in a course that offers them academic credit in computer science because no such course is offered at Terra Linda.

IMG_2531Once we arrived, we sat back and watched an inspirational, sometimes shocking, movie about the state of Computer Science education and the lack of opportunities afforded young women in this ever important career field. Although there are many companies and academic institutions that are attempting to address these issues, the United States still lags behind many countries and the numbers, especially for girls and under represented populations, are still appalling.

The Numbers Are Bad For Everyone

For example, according to the movie (and some quick research I conducted), only 10% of all American high schools actually offer any courses in Computer Science, and only 5% offer the AP Computer Science exam. One would think that the numbers in California must be better than the national average because, after all, we are the center of the technology boom, right? Well, according to the numbers presented by ECS and the College Board, California isn’t doing very well either: “In California, less than 1 percent of all advanced placement exams taken in 2011 were in computer science”. The shocking thing about this statistic is that since 2011, there has actually been a decline in the number of students taking Computer Science courses in high school.

They Are Worse For Girls (and Abysmal For Students Of Color)

To make matters worse, the numbers of girls who took the AP Computer science test made up only 21% of the the original 1% of AP test takers. That’s .21% of all students taking AP tests. Of the over 320,000 AP tests taken in 2011, about 3100 were AP Computer Science, and only 650 were girls. That’s really bad, but consider that in 2011, of the 3100 AP Computer Science test takers, 29 were African American.

The Numbers In Marin Are Bad Too

The numbers of students being exposed to Computer Science in the San Rafael School District is somewhat typical of the national trend, but it does seem a bit strange considering our proximity to Silicon Valley. We have tech firms all around us, but so little of that energy and intellectual power seems to be trickling into the public school system.  Oddly enough, its not just a problem in the public school system. Many of the prestigious private schools in Marin don’t offer robust Computer Science programs either.

Terra Linda doesn’t have a single Computer Science course, and San Rafael just added one two years ago which is strictly an introductory course to the field. Neither high school offers an AP Computer Science course. The middle schools in our district are starting to offer some exposure to coding, but still are lagging far behind where they need to be.

Some Possible Reasons

There are some reasons for this that are systemic and institutional. For so many years, No Child Left Behind emphasized Math and English to the detriment of almost every other content area. Students were enrolled in double Math and double English classes in order to get their scores up on state wide tests, and enrollment in other classes like CTE and Art declined. Another problem is teacher certification. In the state of California, the AP Computer Science class is considered a Math class, so only teachers certificated to teach Math can actually teach this course. There has been a push to change this, through a supplementary authorization, but currently in the state, even if you have a degree in Computer Science, you can’t teach the course unless you have a credential in Math. The other problem is more philosophical. I am not sure if we should be seeing Computer Science as its own separate endeavor, but rather should be seeking to integrate CS into Math and Science and Econ. curriculum.

The other problem is actually due, ironically, to how financially successful a person can be if they possess a Computer Science degree (or other technical degree). Its hard for school districts to attract a teacher with these skills when they can get a job working in the tech industry that now typically have starting salaries in the six figure range.

What’s Next – SRHS GirlsWhoCode

After getting off the bus, the girls were clearly affected. And I wanted them to consider doing something about it, but I wanted them to take charge. I knew their ideas would be better than mine, and so the girls got together for a post viewing meeting and discussed what they wanted to do at our school to address this problem. The other instructor and I left them alone, and they proceeded to come up with a plan. They captured their ideas and now they are set to meet with the school’s counseling staff. These girls are an amazing group of highly motivated and talented people and I have no doubt that they are going to come up with a great plan. I’ll be updating this post as soon as an official plan takes shape. I look forward to helping them debug this problem.

Building The Central Force Model

From Lines To Angles, and Particles To Rigid Bodies

We dove straight into circular motion with the 2nd year students this past week. The primary focus of last year was linear dynamics and although we did study objects that moved along curved paths (projectiles), we were still looking at two-dimensional motion as being composed of two component motions along straight lines.

In the second year program, a good part of the first semester is dedicated to looking at objects that rotate around a central axis. There are two major shifts that will be introduced. The first is the introduction of an entirely new coordinate system – polar coordinates. The students spent most of last year learning about two dimensional vectors in Euclidean space, but this year, we will see that for objects traveling in various curved paths, a polar coordinate space can actually be much easier work with. The other shift will introduce students to collections of particles composed into continuous rigid bodies. This requires some significant changes in how the students view an object’s orientation in space and how an object’s mass is distributed. No longer can we assume that the object’s mass is located at a single point in space. In both cases, we are adding to the complexity of our conception of the universe by adding new representations of both space and the objects that inhabit that space.

Observing Circular Motion

In the modeling pedagogy, a new concept or collection of concepts is introduced using a paradigm lab. These labs are meant to introduce students to a new phenomenon and to be the launching off point of the actual building of a conceptual model.

Using the video analysis and vector visualization tools of LoggerPro, I had the students track the motion of a Styrofoam “puck” that was placed on our air hockey table (yes, we actually have an air hockey table that was donated to the school!) but was also attached to a thin thread to a fixed point on the table. The students used the video to track the motion of the puck as it essentially traveled in a circular path.

Although the lab is a bit tricky to set up, the ability to not only track the position of the object in two dimensions, but also the ability to attach velocity and acceleration vectors to the object is really helpful in engaging students in a great conversation around why the acceleration vector points to the inside of the circle. It also allows us to discover a whole new set of mathematical functions for describing motion. After tracking the position of the puck, we are ready for a class white board discussion.

The Graph Matching Mistake Game

I ask the students to draw the motion map of the puck’s motion in two dimensions including the velocity and acceleration vectors. I then ask them to include the graphs created by LoggerPro. LoggerPro produces a really interesting position vs. time graph in both the x and y dimensions. At this point the class knows the drill, and they use the mathematical function matching tool in LoggerPro to match the graph. I ask the students to include on their whiteboards the function that they think best fits the plotted data. This is where it gets really interesting.

IMG_1223

Notice in the above photo that the students used a polynomial function. I then ask the students to use Desmos to plot their graphs. Then I ask them to zoom out on the graph.

iozt61kwui

This is where they discover how this function can’t explain the position vs time data for an object that continually repeats the same path. Some of the students in the class recognize that the data is better explained using a sine function. Because not all the students have been introduced to this function, it presents an opportunity for some students to teach the other students about how these functions work.

IMG_7065

I allow the students to explore the sine function in Desmos, asking them to change the coefficients of the function in order to discover how these coefficients affect the graph.

zukr7fdnxr

The next step is to investigate more thoroughly the relationship between the acceleration and the velocity, as well as introduce the benefits of using polar coordinates to describe how an object’s position changes when you are dealing with an object that is traveling in a circular path. Desmos has the ability to change the graph type from the x,y coordinate plate to a polar representation. We discuss the difficulty of representing an object’s circular path using x(t) and y(t) functions as opposed to r(t) and theta(t) because r(t) is just a constant.

Next up, trying to answer the question: “If it’s accelerating inward, then why isn’t it speeding up towards the inside of the circle?!” Once again, the difficult concept of inertia…

3D Printing and STEM Education

As the Maker Movement spreads into the halls of nearly every school across the country, and with it the technologies that tend to be synonymous with that movement, I thought it might be useful for me to write a reflection about how we have used 3D printing in our program and some of the things that others might want to consider when thinking about investing in 3D printing for their school.

What is 3D Printing?

A 3D printer is any device that uses additive fabrication to essentially create some three dimensional object by building that object layer by layer. Currently the most popular way to do this in the educational sphere (because it is the least expensive) is to build the models by extruding melted plastic – similar to having a very precise hot glue gun. This has been the technology that we have used for the past five or six years in the Academy. Recently there has been an explosion in new inexpensive models coming to market that use light to harden photosensitive liquid polymers. These technologies (known as stereolithography  and digital light processing – DLP) use a focused light source or laser to harden the liquid layer by layer. The finished model in most cases is made of some kind of plastic – ABS, PLA, etc. Although the technology is moving forward with other materials, any kind of printer that would be used in a classroom environment is going to make plastic models.

Whatever the process of the 3D printer, these technologies are different from subtractive manufacturing which starts with a “chunk of stuff” and then carves the material away, leaving the 3D model. These always require some kind of cutting instrument like a hardened metal drill bit, or even possibly a laser or high pressure water jet. These methods are still preferred for the actual manufacturing of things like airplane parts, high precision medical instruments and all sorts of other machinery because these methods are highly precise and can be used to create parts from almost any material – metal, stone, plastic, etc. There are two issues with subtractive manufacturing though. The machinery is generally very expensive and learning how to use it properly is quite challenging.

If you would like to learn more about 3D printing in general, I suggest this great website:

http://3dprintingindustry.com/3d-printing-basics-free-beginners-guide/processes/

Our Printers

We currently have three operational 3D printers and one new DLP printer that we are currently assembling. The first 3D printer that we purchased was a Stratasys uPrint:

This printer has served us very well. It builds very precise models using really solid ABS plastic. Its precision comes at a cost though – it is quite slow. OK, its really slow! A nose cone for a rocket can take upwards of six hours to build! The other drawback of this printer is the cost and availability of build/support material. We just bought a complete restock of material and it cost us nearly $1700! Keep in mind that this should last us about six years to eight years.

The other two models that we have are the ubiquitous MakerBot Replicator 2’s. These are much simpler to operate (when they aren’t clogged) and they are much faster. They are also much less expensive. The uPrint cost us about $20,000 dollars including the rinse tank, while each MakerBot Replicator 2 cost us about $2200. Actually one of the MakerBots was part of a DonorsChoose/Autodesk program that cost us nothing (thank you donors and Autodesk!). The material for these machines is much cheaper – about $90 to $50 dollars per spool, as opposed to about $200+ per spool for the uPrint. The drawbacks of these machines is that they need constant maintenance, manual calibration, and the models that they build are not as accurate nor as precise.

We recently were very honored to be the recipients of a new 3D printer, donated by our high school’s parent organization – WeAreSR. Although we haven’t yet been able to use our new 3D printer from Kudo3D, we are excited by its potential. This DLP printer is said to have a much higher resolution, a much faster build speed, and a very large build volume. We will be posting an update once we get it running – which should be soon!

Rapid Prototyping = Rapid Learning

The really rewarding educational aspect of 3D printing, from a teacher’s perspective, is the acceleration of the learning cycle. Students can quickly identify weaknesses in their designs because they can have a part in their hands in literally hours, then make adjustments and have a new version fabricated, sometimes in a single class period. This would be nearly impossible ten years ago.

Now some might argue that it relieves students from the importance of having to think more carefully about their work, but I think this is outweighed by the advantage of allowing students to more quickly assess their spatial reasoning, and as long as we teachers force the students to also reflect on why their design failed or needed revision, then I think ultimately the students will learn more quickly.

This does not mean that we always allow the students to print whatever they want. We do act as “gatekeepers” to the printers so that we aren’t wasting student time, our time and resources. The models must pass a few minimal requirements, such as double checking dimensions, seeing if the model could be made more efficiently as multiple parts, etc.

3D Printing = 3D Spacial Problem Solving

The 3D printers have acted as a great arena for students to learn and develop their 3D spatial problem solving skills. To be clear, its actually the combination of 3D CAD software used to design the models and 3D printing to create the actualized models that helps students visualize, navigate and anticipate interesting three dimensional problems. Generally, the printers are used to create parts that are then used in more complex assemblies. The interface of these parts is where we see students encountering and having to solve complex spatial puzzles.

One of the things that I have witnessed is the advancing complexities of student designs as they become more familiar with the software and also develop their ability to mentally construct the spatial relationships between assembly components. At some point, I’d like to document this process and perhaps develop an assessment tool for measuring the development of these cognitive skills.

The Limitations (Not Star Trek Yet…)

The really amazing aspect of 3D printing is the ability to create real objects from imaginary ones with an almost perfect translation. I do think that it is important to realize that there are some limitations and also some things to consider before you run out and buy one of these things. Here are few things to consider:

All Those Plastic Things

One of my biggest complaints to the 3D printing industry is the lack of any clear and clean way to take 3D printed models that were unsuccessful and break them down back into raw materials for use in the printer. At the end of the school year, we have a fairly large bin of unwanted models that we collect for recycling. Some of the models are indeed recyclable while others are not depending on the material used. I think the manufacturers need to come up with a clear “cradle to cradle” solution for their printers that allow users to throw their models back into the machine to be re-extruded. It is theoretically possible and at least one company is offering a product called the Fillabot for addressing this issue.

Its Not That “Rapid”

Now, in relative terms when compared to milling, 3D printing is pretty fast, but it is actually slow in the context of the classroom. Even though its called rapid prototyping, it can seem really slow for some folks who are new to the world of manufacturing prototypes. You see, in the past, modelers would make a prototype out of clay, create a mold, cast the mold, make refinements, etc. Or one would calibrate and setup the CNC mill, have to change out bits, run test cuts, etc. In this context, 3D printing seems rapid. But its still not Star Trek.

The time can vary significantly based on the type of the printer, the complexity of the design, and the size of the model. This can be really frustrating for some teachers who want to be able to print an entire class’ models and have them ready for the next class period – that won’t happen. It can take hours to print just one model. You have to design your course in a way that allows the students to work on parallel tasks and then you need to have some way of keeping track of the printing queue.

It Won’t Make Everything

These machines are amazing, and we really love our array of 3D Printers, but experience has taught us that there are limitations to what they can make. Because all of these printers essentially work with liquified plastic, there are limits to the geometry of what you can build. As the models are built, they can “sag” or deform under their own weight. This can lead to small deformities, or catastrophic failures. Calibration can also be an issue with some of the less expensive or older printers. If the build plate is not properly leveled and calibrated, the entire build process can fail. Models with significant “overhang” can collapse, ruining the model.

Different printers deal with this slightly differently. Our MakerBots, for example, add “supports” to the model. These are little posts that act to hold up arching forms. The problem with this is that these posts then need to be removed from the model, and we have found this to be less than ideal. It adds extra time to the process because you have to do some post finishing work which can include filing and some sanding. Our uPrint actually adds a soluble support to the model that can be removed using a mild (but still toxic) solution. Again, this post processing adds a significant amount of time to the entire fabrication process.

Size is also a limitation. Don’t think for a minute that just because the build plate is 8 inches by 6 inches, that you can build a model with that footprint. You can’t. Once again, because you are dealing with liquified plastic that cools, it also shrinks. The larger the volume of the model, the greater the chance that the model will curl, buckle, and deform. Read the fine print from the manufacturer to get the real build size limit.

Easier, But Not Easy

The last point we want to make is that working with a 3D printing is certainly easier than running a 5 axis CNC mill, but they are not as easy to work with as an actual 2D printer. Adding that extra dimension has its challenges. Plan on spending quite a bit of time learning how to maintain your printer. Just like 2D printers, 3D printers “jam” all the time. The extruded plastic can get stuck in the nozzle and you can come back after several hours of printing and find that the very last cm of the model never printed because the nozzle is completely gummed up! Be aware that these can be infuriating moments that take significant amounts of time to fix. I have spoken to some teachers that got so frustrated that their printers ended up just sitting in a corner of the classroom, tragically unused.

Our Recommendations

Our recommendations are simple. Before you go out and buy one of these things, you have to be willing to put in quite a bit of time to maintain it and learn how to optimize your printer’s performance. There are tricks to optimizing each printer out there, and it will require that you watch some YouTube videos, dig through online support forums and be patient.

There are clear and obvious reasons to get one of these if you are running a STEM program, especially one focused on engineering or design. What might not be obvious is that these machines can also be incorporated into mathematics education, and definitely into a 3D art course or sculpture course.

There are so many models out there now, and they all claim to be the very best value. Each will obviously have advantages and disadvantages. Ease of use and less expensive generally means that your models will not be as precise or accurate. Inexpensive models can also be difficult to maintain. DLP printers are looking promising. They are coming down in price, they are faster and they are very precise. They can print models using different materials (like castable resin, or flexible resin). On the other hand, keep in mind that they are still more expensive, and they use a somewhat toxic resin that can be a non starter for some teachers.

Building the Electrical Current Model with The Amazing $25 Programmable Power Supply

Not Just For Teaching Robotics

Thanks to the generous donations of supporters of the Physics Academy, we were able to purchase a new set of Arduino Uno micro-controllers for use in this year’s robotics competition. As I was planning out the unit on teaching DC circuits, I realized that some of our DC power supplies might need to be replaced. I got to thinking – could the Arduino replace these hulking, expensive power supplies?

product.exps._hero.001.590.332

The answer has been (with one caveat) – yes. The above power supplies are nice, no doubt about it, but they are big, costly ($199) and they are not as nearly as extensible as a micro-controller.

Arduino_Uno_-_R3

The Arduino micro-controller can act as a fixed 5V power supply, or using its PWM pins, you can vary the voltage from 0V to 5V with a resolution of about 20 mV. The other advantage about using the Arduino is that it gives you a chance to teach a little bit of programming too! In our case, it allows for a great introduction to robotics well before we are ready to start our unit on robotics.

The one disadvantage is that you can’t test any circuits that need over 5V of electrical potential difference, nor can you test things like motors or other higher current (> 40 mA) circuits. We didn’t find this to be a big problem, but if you do, you can actually purchase a shield (an attachment that fits on top of the Arduino) from Adafruit Industries that allows you to use a higher voltage, higher current power supply that is controllable through the Arduino.

Mapping Electrical Potential (Voltage)

One of the first activities that the students do, which is a great activity from the AMTA curriculum repository, is to have the students “map” the voltage between two metal bars that are partially submerged in water.

IMG_1870

Using the Arduino as the power supply, the students use a multimeter to check the voltage at specific locations on a grid that is placed under the transparent pan holding the water. These numbers are recorded into a spreadsheet. Excel has a great tool for doing a 3D map of the values.

potentialmap

What results is a really nice visualization of the potential isolines and the spacial variance of the voltage, and thus the electrical field.

Ohm’s Law – A Flow Model

We then move from voltage maps to flow model. The students investigate how voltage, current and resistance are related to one another. The students begin by investigating the current flowing into and out of a resistor, and most are surprised to find that the current in the same flowing into a resistor as it is flowing out. They expect that current should be “used up” by the resistor – causing a bulb to glow for example. When they find that this is not the case, they either think that they have done the experiment incorrectly or that perhaps the multimeter is not precise enough. This confusion comes from the idea that they are expecting current and energy to be equivalent.

IMG_1918

The hydrology analogy is introduced as a possible model for describing this phenomenon. We discuss the movement of water past a water wheel, and how the water flowing into the wheel is equal to the amount of water flowing “out” from the wheel. Students quickly realize that the wheel still turns, not because the water is “used up”, but because the water looses energy.

The final challenge for the students is to confront the oddity that is parallel circuits. This is made a bit easier by thinking about the flow model, but the confusion with parallel circuits stems from the idea that a battery is a constant current supplier – which of course it is not. The Arduino, just like a battery, will increase the amount of current flowing from its digital output pins when more pathways are added for the current to flow. This is where I would be careful to make sure however that you don’t approach the 40 mA limit. If you do, you can get some weird results in your observations as the Arduino will naturally cut off current draws around this range to protect its electronics.

Conclusion

The switch to the Arduino has been quite successful, and as stated before, it launches the students into the robotics project with a knowledge that the Arduino is simply a controllable power supply. They learn very quickly from that point on that the Arduino can also act like a voltmeter too! Using its analog input and switching the digital pins to be input pins, the Arduino can also mimic the functionality of a multimeter. If you are considering new power supplies, I would recommend looking into this as an option.

Investigating The Projectile Particle Model

The Class Designs The Deployment Experiment

The video above shows the recent deployment activity where students predicted the vertical position of a projectile (a Hot Wheels car) as it traversed a known horizontal distance. The student predictions are identified by green sticky notes on the the left hand side.

The students first had to work out the problem on their own whiteboards before being given the sticky note that indicated the vertical position as measured above or below the red line. Most groups calculated the same position with two groups noting a sightly different prediction!

In this deployment, I set up the ramp, and told them that they had a photogate sensor at their disposal. They had to design the experimental procedure. A great discussion followed, and the class was quite successful as you can see (the students who had the significantly different prediction were able to hunt down their mistake – so everyone felt that the model “worked”).

Analyzing Projectile Motion in Video and Code

Prior to the deployment, students were asked to use a video camera to record the motion of a projectile. This is a great experiment to do with LoggerPro or some other video analysis tools that allow the students to track the position of the ball or some other projectile.

The students have also been learning how to simulate constant velocity and constant acceleration particle motion in Processing. We extended this to now include projectile motion, and the students analyzed simulated projectiles and compared the data gathered in the real universe to that gathered in the virtual universe. I will be writing about this process in more detail soon.